期刊论文详细信息
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN
Effective Permeability of Multi-Channel Cross-Flow Filtration Membranes from Permeate Flux Measurements Using the Boundary Integral Method
T. D. Papathanasiou1  K. A. Caridis2 
[1] Department of Chemical Engineering, Swearingen Engineering Center University of South Carolina;Department of Chemical Engineering & Chemical Technology, Imperial College
关键词: Mixed-Gas Adsorption;    Adsorption Enhancement;    Micropore Filling;    Microporous Carbon;    Acidic Surface Oxide;   
DOI  :  10.1252/jcej.30.839
来源: Maruzen Company Ltd
PDF
【 摘 要 】

References(11)Cited-By(4)The problem of fluid transport inside ceramic, porous, multi-channel microfiltration membranes has been studied experimentally and computationally. The transport of permeate in a seven (star-shaped) channel tubular membrane is modeled according to Darcy’s equation for flow in porous media; the resultant Laplace equation is solved numerically on the complex, multi-connected geometry of interest using the Boundary Integral Method (BIM). Based on this model, we propose an efficient and novel procedure for determining the effective permeability (Km) of the membrane module by comparing computational results with on-line experimental measurements of permeate flux at various levels of Trans-Membrane Pressure (TMP). Besides determining Km, the proposed approach can be used to identify alternative designs and operating conditions in membrane modules of arbitrary geometrical complexity.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080694286ZK.pdf 19KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:24次