期刊论文详细信息
Mathematica Slovaca
Right orders and amalgamation for lattice-ordered groups
A. Glass1  V. Bludov1 
关键词: totally ordered set;    permutation group;    representation;    lattice-ordered group;    â„“-permutation group;    amalgamation;    free product with amalgamated subgroup;    right-orderable group;    convex sublattice subgroups;   
DOI  :  10.2478/s12175-011-0017-2
学科分类:数学(综合)
来源: Slovenska Akademia Vied * Matematicky Ustav / Slovak Academy of Sciences, Mathematical Institute
PDF
【 摘 要 】

Let H i be a sublattice subgroup of a lattice-ordered group G i (i = 1, 2). Suppose that H 1 and H 2 are isomorphic as lattice-ordered groups, say by φ. In general, there is no lattice-ordered group in which G 1 and G 2 can be embedded (as lattice-ordered groups) so that the embeddings agree on the images of H 1 and H 1φ. In this article we prove that the group free product of G 1 and G 2 amalgamating H 1 and H 1φ is right orderable and so embeddable (as a group) in a lattice-orderable group. To obtain this, we use our necessary and sufficient conditions for the free product of right-ordered groups with amalgamated subgroup to be right orderable [BLUDOV, V. V.—GLASS, A. M. W.: Word problems, embeddings, and free products of right-ordered groups with amalgamated subgroup, Proc. London Math. Soc. (3) 99 (2009), 585–608]. We also provide new limiting examples to show that amalgamation can fail in the category of lattice-ordered groups even when the amalgamating sublattice subgroups are convex and normal (ℓ-ideals) and solve of Problem 1.42 from [KOPYTOV, V. M.—MEDVEDEV, N. YA.: Ordered groups. In: Selected Problems in Algebra. Collection of Works Dedicated to the Memory of N. Ya. Medvedev, Altaii State University, Barnaul, 2007, pp. 15–112 (Russian)].

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080690846ZK.pdf 272KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:30次