期刊论文详细信息
Algebraic Geometric Topology | |
Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property | |
Allday, Christopher1  Puppe, Volker2  Franz, Matthias3  | |
[1] Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USADepartment of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USADepartment of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA;Fachbereich Mathematik und Statistik, Universität Konstanz, D-78457 Konstanz, GermanyFachbereich Mathematik und Statistik, Universität Konstanz, D-78457 Konstanz, GermanyFachbereich Mathematik und Statistik, Universität Konstanz, D-78457 Konstanz, Germany;Department of Mathematics, University of Western Ontario, London, ON N6A 5B7, CanadaDepartment of Mathematics, University of Western Ontario, London, ON N6A 5B7, CanadaDepartment of Mathematics, University of Western Ontario, London, ON N6A 5B7, Canada | |
关键词: torus actions; homology manifolds; equivariant homology; equivariant cohomology; Atiyah–Bredon complex; Poincaré–Alexander–Lefschetz duality; Cohen–Macaulay modules; | |
DOI : 10.2140/agt.2014.14.1339 | |
来源: Mathematical Sciences Publishers-MSP | |