期刊论文详细信息
Algebraic Geometric Topology
Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property
Allday, Christopher1  Puppe, Volker2  Franz, Matthias3 
[1] Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USADepartment of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USADepartment of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA;Fachbereich Mathematik und Statistik, Universität Konstanz, D-78457 Konstanz, GermanyFachbereich Mathematik und Statistik, Universität Konstanz, D-78457 Konstanz, GermanyFachbereich Mathematik und Statistik, Universität Konstanz, D-78457 Konstanz, Germany;Department of Mathematics, University of Western Ontario, London, ON N6A 5B7, CanadaDepartment of Mathematics, University of Western Ontario, London, ON N6A 5B7, CanadaDepartment of Mathematics, University of Western Ontario, London, ON N6A 5B7, Canada
关键词: torus actions;    homology manifolds;    equivariant homology;    equivariant cohomology;    Atiyah–Bredon complex;    Poincaré–Alexander–Lefschetz duality;    Cohen–Macaulay modules;   
DOI  :  10.2140/agt.2014.14.1339
来源: Mathematical Sciences Publishers-MSP
PDF
【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080683652ZK.pdf 29KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:14次