期刊论文详细信息
Química Nova
Time-series forecasting of pollutant concentration levels using particle swarm optimization and artificial neural networks
Mattos Neto, Paulo S. G. de1  Fernandes, Sérgio M. M.1  Ferreira, Tiago A. E.1  Universidade Federal Rural de Pernambuco, Recife, Brasil1  Universidade Católica de Pernambuco, Recife, Brasil1  Universidade Federal de Pernambuco, Recife, Brasil1  Madeiro, Francisco1  Albuquerque Filho, Francisco S. de1 
关键词: particle swarm optimization;    artificial neural networks;    pollutants' concentration time series.;   
DOI  :  10.1590/S0100-40422013000600007
学科分类:化学(综合)
来源: Sociedade Brasileira de Quimica
PDF
【 摘 要 】

This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050596032ZK.pdf 492KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:1次