Canadian mathematical bulletin | |
Nilpotent Group C*-algebras as Compact Quantum Metric Spaces | |
Marc A. Rieffel1  Michael Christ1  | |
[1] Department of Mathematics, University of California , Berkeley, CA 94720-3840 | |
关键词: group C*-algebra; Dirac operator; quantum metric space; discrete nilpotent group; polynomial growth; | |
DOI : 10.4153/CMB-2016-040-6 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
Let $mathbb{L}$ be a length function on a group $G$, and let $M_mathbb{L}$denote theoperator of pointwise multiplication by $mathbb{L}$ on $lt(G)$. Following Connes,$M_mathbb{L}$ can be used as a ``Dirac'' operator for the reducedgroup C*-algebra $C_r^*(G)$. It defines aLipschitz seminorm on $C_r^*(G)$, which defines a metric on thestate space of$C_r^*(G)$. We show that for any length function satisfying a strong form of polynomialgrowth on a discrete group,the topology from this metric coincides with theweak-$*$ topology (a key property for the definition of a ``compact quantum metric space''). In particular, this holds for all word-length functionson finitely generated nilpotent-by-finite groups.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050577266ZK.pdf | 25KB | download |