期刊论文详细信息
Canadian mathematical bulletin
Real Hypersurfaces in Complex Two-plane Grassmannians with Reeb Parallel Ricci Tensor in the GTW Connection
Juan de Dios Pérez1  Young Jin Suh2  Hyunjin Lee4  Changhwa Woo3 
[1] Departamento de Geometria y Topologia, Universidad de Granada, 18071-Granada, Spain;Department of Mathematics and Research Institute of Real and Complex Manifolds, Kyungpook National University, Daegu 702-701, Republic of Korea;Department of Mathematics, Kyungpook National University , Daegu 702-701, Republic of Korea;Research Institute of Real and Complex Manifolds, Kyungpook National University, Daegu 702-701, Republic of Korea
关键词: Complex two-plane Grassmannian;    real hypersurface;    Hopf hypersurface;    generalized Tanaka-Webster connection;    parallelism;    Reeb parallelism;    Ricci tensor;   
DOI  :  10.4153/CMB-2016-035-x
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

There are several kinds of classification problems for real hypersurfaces in complex two-plane Grassmannians $G_2({mathbb C}^{m+2})$. Among them, Suh classified Hopf hypersurfaces $M$ in $G_2({mathbb C}^{m+2})$ with Reeb parallel Ricci tensor in Levi-Civita connection. In this paper, we introduce the notion of generalized Tanaka-Webster (in shortly, GTW) Reeb parallel Ricci tensor for Hopf hypersurface $M$ in $G_2({mathbb C}^{m+2})$. Next, we give a complete classification of Hopf hypersurfaces in $G_2({mathbb C}^{m+2})$ with GTW Reebparallel Ricci tensor.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050577245ZK.pdf 22KB PDF download
  文献评价指标  
  下载次数:43次 浏览次数:30次