期刊论文详细信息
| Canadian mathematical bulletin | |
| Generalized Equivariant Cohomology and Stratifications | |
| Tyler Holden1  Peter Crooks1  | |
| [1] Department of Mathematics, University of Toronto , Toronto, ON M5S 2E4 | |
| 关键词: equivariant cohomology theory; stratification; affine Grassmannian; | |
| DOI : 10.4153/CMB-2016-032-5 | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
For $T$ a compact torus and $E_T^*$ a generalized $T$-equivariant cohomology theory, we provide a systematic framework for computing $E_T^*$ in the context of equivariantly stratified smooth complex projective varieties. This allows us to explicitly compute $E_T^*(X)$ as an $E_T^*(ext{pt})$-module when $X$ is a direct limit of smooth complex projective $T_{mathbb{C}}$-varieties with finitely many $T$-fixed points and $E_T^*$ is one of $H_T^*(cdot;mathbb{Z})$, $K_T^*$, and $MU_T^*$. We perform this computation on the affineGrassmannian of a complex semisimple group.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050577223ZK.pdf | 21KB |
PDF