期刊论文详细信息
Canadian mathematical bulletin
A Note on Algebras that are Sums of Two Subalgebras
Marek Kȩpczyk1 
[1] Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15--351 Białystok, Poland
关键词: rings with polynomial identities;    prime rings;   
DOI  :  10.4153/CMB-2015-082-6
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

We study an associative algebra $A$ over an arbitrary field,that isa sum of two subalgebras $B$ and $C$ (i.e. $A=B+C$). We show that if $B$ is a right or left Artinian $PI$ algebra and $C$ is a $PI$ algebra, then $A$ is a $PI$ algebra. Additionally wegeneralize this result for semiprime algebras $A$.Consider the class ofall semisimple finite dimensional algebras $A=B+C$ for some subalgebras $B$ and $C$ which satisfy given polynomial identities$f=0$ and $g=0$, respectively.We prove that all algebras in this class satisfy a common polynomialidentity.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050577211ZK.pdf 19KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次