期刊论文详细信息
Canadian mathematical bulletin | |
On the Bound of the $mathrm{C}^*$ Exponential Length | |
Kun Wang1  Qingfei Pan2  | |
[1] Department of Mathematics, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, USA 00931;School of Mechanical and Electrical Engineering, Sanming University, Sanming, Fujian, China | |
关键词: exponential length; | |
DOI : 10.4153/CMB-2014-044-8 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
Let $X$ be a compact Hausdorff space. In this paper, we give anexample to show that there is $uin mathrm{C}(X)otimes mathrm{M}_n$with $det (u(x))=1$ for all $xin X$ and $usim_h 1$ such that the$mathrm{C}^*$ exponential length of $u$ (denoted by $cel(u)$) can not be controlled by$pi$. Moreover, in simple inductive limit $mathrm{C}^*$-algebras,similar examples also exist.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050577094ZK.pdf | 15KB | download |