Canadian mathematical bulletin | |
Classification of Integral Modular Categories of Frobenius--Perron Dimension $pq^4$ and $p^2q^2$ | |
Julia Yael Plavnik4  Eric C. Rowell5  Seung-Moon Hong1  Paul Bruillard5  Deepak Naidu3  Yevgenia Kashina6  César Galindo2  Sonia Natale4  | |
[1] Department of Mathematics and Statistics, University of Toledo, Ohio 43606, USA;Departamento de matemáticas, Universidad de los Andes, Bogotá, Colombia;Department of Mathematical Sciences, Northern Illinois Universit, DeKalb, Illinois 60115, USA;Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, CIEM--CONICET, Córdoba, Argentina;Department of Mathematics, Texas A$&$M University, College Station, Texas 77843, USA;Department of Mathematical Sciences, DePaul University, Chicago, Illinois 60614, USA | |
关键词: modular categories; fusion categories; | |
DOI : 10.4153/CMB-2013-042-6 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
We classify integral modular categories of dimension $pq^4$ and $p^2q^2$, where$p$ and $q$ are distinct primes. We show that such categories are alwaysgroup-theoretical except for categories of dimension $4q^2$.In these cases there arewell-known examples of non-group-theoretical categories, coming from centers ofTambara-Yamagami categories and quantum groups. We show that anon-group-theoretical integral modular category of dimension $4q^2$ is equivalent to either one of these well-known examples or is of dimension $36$ and is twist-equivalent to fusion categories arising from acertain quantum group.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050577085ZK.pdf | 11KB | download |