期刊论文详细信息
Canadian mathematical bulletin
Quasiconvexity and Density Topology
Patrick J. Rabier1 
[1] Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
关键词: density topology;    quasiconvex function;    approximate continuity;    point of continuity;   
DOI  :  10.4153/CMB-2012-028-5
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

We prove that if $f:mathbb{R}^{N}ightarrow overline{mathbb{R}}$ isquasiconvex and $Usubset mathbb{R}^{N}$ is open in the density topology, then$sup_{U}f=operatorname{ess,sup}_{U}f,$ while $inf_{U}f=operatorname{ess,inf}_{U}f$if and only if the equality holds when $U=mathbb{R}^{N}.$ The first (second)property is typical of lsc (usc) functions and, even when $U$ is an ordinaryopen subset, there seems to be no record that they both hold for allquasiconvex functions.This property ensures that the pointwise extrema of $f$ on any nonemptydensity open subset can be arbitrarily closely approximated by values of $f$achieved on ``large'' subsets, which may be of relevance in a variety ofissues. To support this claim, we use it to characterize the common pointsof continuity, or approximate continuity, of two quasiconvex functions thatcoincide away from a set of measure zero.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050577013ZK.pdf 15KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:26次