期刊论文详细信息
| Canadian mathematical bulletin | |
| Linear Forms in Monic Integer Polynomials | |
| Art?ras Dubickas1  | |
| [1] Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania | |
| 关键词: irreducible polynomial; height; linear form in polynomials; Eisenstein's criterion; | |
| DOI : 10.4153/CMB-2011-179-0 | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
We prove a necessary and sufficient condition on the list ofnonzero integers $u_1,dots,u_k$, $k geq 2$, under which a monicpolynomial $f in mathbb{Z}[x]$ is expressible by a linear form$u_1f_1+dots+u_kf_k$ in monic polynomials $f_1,dots,f_k inmathbb{Z}[x]$. This condition is independent of $f$. We also show that ifthis condition holds, then the monic polynomials $f_1,dots,f_k$can be chosen to be irreducible in $mathbb{Z}[x]$.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050576961ZK.pdf | 36KB |
PDF