期刊论文详细信息
Canadian mathematical bulletin
On Certain Multivariable Subnormal Weighted Shifts and their Duals
Ameer Athavale1  Pramod Patil1 
[1] Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
关键词: subnormal;    Reinhardt;    Betti numbers;   
DOI  :  10.4153/CMB-2011-188-x
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

To every subnormal $m$-variable weighted shift $S$ (with boundedpositive weights) corresponds a positive Reinhardt measure $mu$supported on a compact Reinhardt subset of $mathbb C^m$. We show that, for$m geq 2$, the dimensions of the $1$-st cohomology vector spacesassociated with the Koszul complexes of $S$ and its dual ${ilde S}$are different if a certain radial function happens to be integrablewith respect to $mu$ (which is indeed the case with many classicalexamples). In particular, $S$ cannot in that case be similar to${ilde S}$. We next prove that, for $m geq 2$, a Fredholm subnormal$m$-variable weighted shift $S$ cannot be similar to its dual.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576959ZK.pdf 36KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:6次