期刊论文详细信息
| Canadian mathematical bulletin | |
| An Asymptotic Bound on the Composition Number of Integer Sums of Squares Formulas | |
| A. Yehudayoff1  A. Wigderson1  P. Hrubeš1  | |
| [1] School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA | |
| 关键词: composition formulas; sums of squares; Radon-Hurwitz number; | |
| DOI : 10.4153/CMB-2011-143-x | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
Let $sigma_{mathbb Z}(k)$ be the smallest $n$ such that there exists anidentity[(x_1^2 + x_2^2 + cdots + x_k^2) cdot (y_1^2 + y_2^2 + cdots + y_k^2)= f_1^2 + f_2^2 + cdots + f_n^2,] with $f_1,dots,f_n$ being polynomials with integer coefficients inthe variables $x_1,dots,x_k$ and $y_1,dots,y_k$. We prove that$sigma_{mathbb Z}(k) geq Omega(k^{6/5})$.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050576921ZK.pdf | 36KB |
PDF