期刊论文详细信息
Canadian mathematical bulletin
An Asymptotic Bound on the Composition Number of Integer Sums of Squares Formulas
A. Yehudayoff1  A. Wigderson1  P. Hrubeš1 
[1] School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
关键词: composition formulas;    sums of squares;    Radon-Hurwitz number;   
DOI  :  10.4153/CMB-2011-143-x
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

Let $sigma_{mathbb Z}(k)$ be the smallest $n$ such that there exists anidentity[(x_1^2 + x_2^2 + cdots + x_k^2) cdot (y_1^2 + y_2^2 + cdots + y_k^2)= f_1^2 + f_2^2 + cdots + f_n^2,] with $f_1,dots,f_n$ being polynomials with integer coefficients inthe variables $x_1,dots,x_k$ and $y_1,dots,y_k$. We prove that$sigma_{mathbb Z}(k) geq Omega(k^{6/5})$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576921ZK.pdf 36KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:11次