期刊论文详细信息
Canadian mathematical bulletin
Involutions Fixing $F^n cup {ext{Indecomposable}}$
Pedro L. Q. Pergher1 
[1] Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP 13565-905, Brazil
关键词: involution;    projective space bundle;    indecomposable manifold;    splitting principle;    Stiefel-Whitney class;    characteristic number;   
DOI  :  10.4153/CMB-2011-051-4
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

Let $M^m$ be an $m$-dimensional, closed and smooth manifold, equipped with a smooth involution $Tcolon M^m o M^m$ whose fixed point set has the form $F^n cup F^j$, where $F^n$ and $F^j$ are submanifolds with dimensions $n$ and $j$, $F^j$ is indecomposable and $ n >j$. Write $n-j=2^pq$, where $q ge 1$ is odd and $p geq 0$, and set $m(n-j) = 2n+p-q+1$ if $p leq q + 1$and $m(n-j)= 2n + 2^{p-q}$ if $p geq q$. In this paper we show that $m le m(n-j) + 2j+1$. Further, we show that this bound is emph{almost} best possible, by exhibiting examples $(M^{m(n-j) +2j},T)$ where the fixed point set of $T$ has the form $F^n cup F^j$ described above, for every $2 le j

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576845ZK.pdf 37KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:14次