期刊论文详细信息
Canadian mathematical bulletin | |
Irreducible Representations of Inner Quasidiagonal $C^*$-Algebras | |
Bruce Blackadar1  Eberhard Kirchberg2  | |
[1] Department of Mathematics, University of Nevada, Reno, Reno, NV, U.S.A.;Institut für Mathematik, Humboldt Universität zu Berlin, Berlin, Germany | |
关键词: orderings of higher level; division rings; valuations; | |
DOI : 10.4153/CMB-2011-082-4 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
It is shown that a separable $C^*$-algebra is inner quasidiagonal if andonly if it has a separating family of quasidiagonal irreduciblerepresentations. As a consequence, a separable $C^*$-algebra is a strongNF algebra if and only if it is nuclear and has a separating family ofquasidiagonal irreducible representations. We also obtain some permanence properties of the class of innerquasidiagonal $C^*$-algebras.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576794ZK.pdf | 36KB | download |