期刊论文详细信息
Canadian mathematical bulletin
The Mean Width of Circumscribed Random Polytopes
Károly J. Böröczky2  Rolf Schneider1 
[1] Mathematisches Institut, Albert-Ludwigs-Universität, Freiburg i. Br., Germany;Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
关键词: random polytope;    mean width;    approximation;   
DOI  :  10.4153/CMB-2010-067-5
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

For a given convex body $K$ in ${mathbb R}^d$, a random polytope$K^{(n)}$ is defined (essentially) as the intersection of $n$independent closed halfspaces containing $K$ and having an isotropicand (in a specified sense) uniform distribution. We prove upper andlower bounds of optimal orders for the difference of the mean widthsof $K^{(n)}$ and $K$ as $n$ tends to infinity. For a simplicialpolytope $P$, a precise asymptotic formula for the difference of themean widths of $P^{(n)}$ and $P$ is obtained.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576737ZK.pdf 37KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:10次