期刊论文详细信息
Canadian mathematical bulletin | |
The Mean Width of Circumscribed Random Polytopes | |
Károly J. Böröczky2  Rolf Schneider1  | |
[1] Mathematisches Institut, Albert-Ludwigs-Universität, Freiburg i. Br., Germany;Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary | |
关键词: random polytope; mean width; approximation; | |
DOI : 10.4153/CMB-2010-067-5 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
For a given convex body $K$ in ${mathbb R}^d$, a random polytope$K^{(n)}$ is defined (essentially) as the intersection of $n$independent closed halfspaces containing $K$ and having an isotropicand (in a specified sense) uniform distribution. We prove upper andlower bounds of optimal orders for the difference of the mean widthsof $K^{(n)}$ and $K$ as $n$ tends to infinity. For a simplicialpolytope $P$, a precise asymptotic formula for the difference of themean widths of $P^{(n)}$ and $P$ is obtained.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576737ZK.pdf | 37KB | download |