期刊论文详细信息
| Canadian mathematical bulletin | |
| Density of Polynomial Maps | |
| Chen-Lian Chuang1  Tsiu-Kwen Lee1  | |
| [1] Department of Mathematics, National Taiwan University, Taipei 106, Taiwan | |
| 关键词: density; polynomial; endomorphism ring; PI; | |
| DOI : 10.4153/CMB-2010-041-1 | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
Let $R$ be a dense subring of $operatorname{End}(_DV)$, where $V$ is a left vector space over a division ring $D$. If $dim{_DV}=infty$, then the range of any nonzero polynomial $f(X_1,dots,X_m)$ on $R$ is dense in $operatorname{End}(_DV)$. As an application, let $R$ be a prime ring without nonzero nil one-sided ideals and $0e ain R$. If $af(x_1,dots,x_m)^{n(x_i)}=0$ for all $x_1,dots,x_min R$, where $n(x_i)$ is a positive integer depending on $x_1,dots,x_m$, then $f(X_1,dots,X_m)$ is a polynomial identity of $R$ unless $R$ is a finite matrix ring over a finite field.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050576707ZK.pdf | 36KB |
PDF