期刊论文详细信息
| Canadian mathematical bulletin | |
| Cohomological Dimension and Schreier's Formula in Galois Cohomology | |
| 关键词: cohomological dimension; Schreier's formula; Galois theory; $p$-extensions; pro-$p$-groups; | |
| DOI : 10.4153/CMB-2007-056-3 | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
Let $p$ be a prime and $F$ a field containing a primitive $p$-throot of unity. Then for $nin N$, the cohomological dimensionof the maximal pro-$p$-quotient $G$ of the absolute Galois groupof $F$ is at most $n$ if and only if the corestriction maps$H^n(H,Fp) o H^n(G,Fp)$ are surjective for all opensubgroups $H$ of index $p$. Using this result, we generalizeSchreier's formula for $dim_{Fp} H^1(H,Fp)$ to $dim_{Fp}H^n(H,Fp)$.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050576550ZK.pdf | 36KB |
PDF