期刊论文详细信息
Canadian mathematical bulletin
A Bernstein--Walsh Type Inequality and Applications
关键词: Bernstein-Walsh inequality;    convergence sets;    analytic functions;    ultradifferentiable functions;    formal power series;   
DOI  :  10.4153/CMB-2006-026-9
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

A Bernstein--Walsh type inequality for $C^{infty }$ functions of severalvariables is derived, which then is applied to obtain analogs andgeneralizations of the following classical theorems: (1) Bochnak--Siciaktheorem: a $C^{infty }$ function on $mathbb{R}^{n}$ that is realanalytic on every line is real analytic; (2) Zorn--Lelong theorem: if adouble power series $F(x,y)$ converges on a set of lines of positivecapacity then $F(x,y)$ is convergent; (3) Abhyankar--Moh--Sathaye theorem:the transfinite diameter of the convergence set of a divergent series iszero.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576467ZK.pdf 36KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:11次