期刊论文详细信息
Canadian mathematical bulletin | |
A Bernstein--Walsh Type Inequality and Applications | |
关键词: Bernstein-Walsh inequality; convergence sets; analytic functions; ultradifferentiable functions; formal power series; | |
DOI : 10.4153/CMB-2006-026-9 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
A Bernstein--Walsh type inequality for $C^{infty }$ functions of severalvariables is derived, which then is applied to obtain analogs andgeneralizations of the following classical theorems: (1) Bochnak--Siciaktheorem: a $C^{infty }$ function on $mathbb{R}^{n}$ that is realanalytic on every line is real analytic; (2) Zorn--Lelong theorem: if adouble power series $F(x,y)$ converges on a set of lines of positivecapacity then $F(x,y)$ is convergent; (3) Abhyankar--Moh--Sathaye theorem:the transfinite diameter of the convergence set of a divergent series iszero.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576467ZK.pdf | 36KB | download |