期刊论文详细信息
Canadian mathematical bulletin | |
On the Generalized d'Alembert's and Wilson's Functional Equations on a Compact group | |
关键词: Compact groups; Functional equations; Central functions; Lie; groups; Invariant differential operators.; | |
DOI : 10.4153/CMB-2005-047-3 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
Let $G$ be a compact group. Let $sigma$ be a continuous involutionof $G$. In this paper, we areconcerned by the following functional equation$$int_{G}f(xtyt^{-1}),dt+int_{G}f(xtsigma(y)t^{-1}),dt=2g(x)h(y), quadx, y in G,$$ where $f, g, h colonG mapsto mathbb{C}$, to bedetermined, are complex continuous functions on $G$ such that $f$ iscentral. This equation generalizes d'Alembert's and Wilson'sfunctional equations. We show that the solutions are expressed bymeans of characters of irreducible, continuous and unitaryrepresentations of the group $G$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576430ZK.pdf | 37KB | download |