期刊论文详细信息
Canadian mathematical bulletin | |
$C^*$-Algebras and Factorization Through Diagonal Operators | |
关键词: $C^*$-algebras; summing operators; diagonal operators; Radon-Nikodym property; | |
DOI : 10.4153/CMB-2004-059-9 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
Let $cal A$ be a $C^*$-algebra and $E$ be a Banach space withthe Radon-Nikodym property. We prove that if $j$ is an embeddingof $E$ into an injective Banach space then for every absolutelysumming operator $T:mathcal{A}longrightarrow E$, the composition$j circ T$ factors through a diagonal operator from $l^{2}$ into$l^{1}$. In particular, $T$ factors through a Banach space withthe Schur property. Similarly, we prove that for $2
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576384ZK.pdf | 36KB | download |