Canadian mathematical bulletin | |
Algebraic Homology For Real Hyperelliptic and Real Projective Ruled Surfaces | |
关键词: positive solution; conformal scalar curvature equation; growth estimate; | |
DOI : 10.4153/CMB-2001-025-4 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
Let $X$ be a reduced nonsingular quasiprojective scheme over ${mathbbR}$ such that the set of real rational points $X({mathbb R})$ is densein $X$ and compact. Then $X({mathbb R})$ is a real algebraic variety.Denote by $H_k^{alg}(X({mathbb R}), {mathbb Z}/2)$ the group ofhomology classes represented by Zariski closed $k$-dimensionalsubvarieties of $X({mathbb R})$. In this note we show that $H_1^{alg}(X({mathbb R}), {mathbb Z}/2)$ is a proper subgroup of$H_1(X({mathbb R}), {mathbb Z}/2)$ for a nonorientable hyperellipticsurface $X$. We also determine all possible groups $H_1^{alg}(X({mathbb R}),{mathbb Z}/2)$ for a real ruled surface $X$ in connection with the previouslyknown description of all possible topological configurations of $X$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576201ZK.pdf | 36KB | download |