期刊论文详细信息
Canadian mathematical bulletin
Boundedness of the $q$-Mean-Square Operator on Vector-Valued Analytic Martingales
关键词: Ricci curvature;    conjugate radius;   
DOI  :  10.4153/CMB-1999-027-3
学科分类:数学(综合)
来源: University of Toronto Press * Journals Division
PDF
【 摘 要 】

We study boundedness properties of the $q$-mean-square operator$S^{(q)}$ on $E$-valued analytic martingales, where $E$ is acomplex quasi-Banach space and $2 leq q < infty$. We establishthat a.s. finiteness of $S^{(q)}$ for every bounded $E$-valuedanalytic martingale implies strong $(p,p)$-type estimates for$S^{(q)}$ and all $pin (0,infty)$. Our results yield newcharacterizations (in terms of analytic and stochastic propertiesof the function $S^{(q)}$) of the complex spaces $E$ that admit anequivalent $q$-uniformly PL-convex quasi-norm. We also obtain avector-valued extension (and a characterization) of part of an observation due to Bourgain and Davis concerning the$L^p$-boundedness of the usual square-function on scalar-valuedanalytic martingales.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912050576097ZK.pdf 36KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:2次