Canadian mathematical bulletin | |
Boundedness of the $q$-Mean-Square Operator on Vector-Valued Analytic Martingales | |
关键词: Ricci curvature; conjugate radius; | |
DOI : 10.4153/CMB-1999-027-3 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
We study boundedness properties of the $q$-mean-square operator$S^{(q)}$ on $E$-valued analytic martingales, where $E$ is acomplex quasi-Banach space and $2 leq q < infty$. We establishthat a.s. finiteness of $S^{(q)}$ for every bounded $E$-valuedanalytic martingale implies strong $(p,p)$-type estimates for$S^{(q)}$ and all $pin (0,infty)$. Our results yield newcharacterizations (in terms of analytic and stochastic propertiesof the function $S^{(q)}$) of the complex spaces $E$ that admit anequivalent $q$-uniformly PL-convex quasi-norm. We also obtain avector-valued extension (and a characterization) of part of an observation due to Bourgain and Davis concerning the$L^p$-boundedness of the usual square-function on scalar-valuedanalytic martingales.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576097ZK.pdf | 36KB | download |