期刊论文详细信息
Journal of the Australian Mathematical Society
Isometries between matrix algebras
Wai-Shun Cheung1 
[1] Chi-Kwong Li
关键词: primary 15A04;    15A60;   
DOI  :  10.1017/S1446788700010119
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

As an attempt to understand linear isometries between C*-algebras without the surjectivity assumption, we study linear isometries between matrix algebras. Denote by Mm the algebra of m × m complex matrices. If k ≥ n and φ: Mn → Mk has the form X ↦ U[X ⊕ f(X)] V or X ↦ U[X1 ⊕ f(X)]V for some unitary U, V ∈ Mk and contractive linear map f: Mn → Mk, then ║φ(X)║ = ║X║ for all X ∈ Mn. We prove that the converse is true if k ≤ 2n - 1, and the converse may fail if k ≥ 2n. Related results and questions involving positive linear maps and the numerical range are discussed.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040545400ZK.pdf 609KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:8次