期刊论文详细信息
Journal of the Australian Mathematical Society | |
Weighted p-Sidon sets | |
K. E. Hare1  | |
[1] D. C. Wilson | |
关键词: primary 43A46; secondary 43A80; 22E46; | |
DOI : 10.1017/S1446788700000082 | |
学科分类:数学(综合) | |
来源: Cambridge University Press | |
【 摘 要 】
A weighted generalization of a p-Sidon set, called an (a, p)-Sidon set, is introduced and studied for infinite, non-abelian, connected, compact groups G. The entire dual object Ĝ is shown never to be central (p − 1, p)-Sidon for 1 ≦ p < 2, nor central (1 + ε, 2)-Sidon for ε > 0. Local (p, p)-Sidon sets are shown to be identical to local Sidon sets. Examples are constructed of infinite non-Sidon sets which are central (2p − 1, p)-Sidon, or (p − 1, p)-Sidon, for 1 < p < 2. Full m-fold FTR sets are proved not to be central (a, 2m/(m + 1))-Sidon for any a > 1.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040544780ZK.pdf | 838KB | download |