期刊论文详细信息
Journal of the Australian Mathematical Society
Linear independence of translations
Joseph Rosenblatt1 
关键词: 39A10;    42A38;   
DOI  :  10.1017/S1446788700038519
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

It was shown by Edgar and Rosenblatt that f ∈ Lp (ℝn), 1 ≤ p < 2n/ (n-1), and f ≠0, then f has linearly independent translates. Using a result of Hömander, it is shown here that the same theorem holds if p = 2n / (n−1). This gives a sharp result because for n ≥2, there exists f ∈C0 (ℝn), f ≠0, which is simultaneously in all Lp (ℝn), p > 2n/(n−1), that has a linear dependence relation among its translates. References and some discussion are included.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040544642ZK.pdf 113KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:7次