期刊论文详细信息
Journal of the Australian Mathematical Society
Generation of generators of holomorphic semigroups
Christian Berg1 
[1] Khristo Boyadzhiev
关键词: 47 A 60;    47 B 44;    47 D 05;   
DOI  :  10.1017/S1446788700032067
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

We construct a functional calculus, g → g(A), for functions, g, that are the sum of a Stieltjes function and a nonnegative operator monotone function, and unbounded linear operators, A, whose resolvent set contains (−∞, 0), with {‖r(r + A)−1‖ ¦ r > 0} bounded. For such functions g, we show that –g(A) generates a bounded holomorphic strongly continuous semigroup of angle θ, whenever –A does.We show that, for any Bernstein function f, − f(A) generates a bounded holomorphic strongly continuous semigroup of angle π/2, whenever − A does.We also prove some new results about the Bochner-Phillips functional calculus. We discuss the relationship between fractional powers and our construction.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040544518ZK.pdf 927KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:3次