Journal of the Australian Mathematical Society | |
Epicompletetion of archimedean l–groups and vector lattices with weak unit | |
Richard N. Ball1  | |
[1] Anthony W. Hager | |
关键词: 06 F 20; 46 A 40; 54 C 40; 18 A 40; 54 G 05; | |
DOI : 10.1017/S1446788700035175 | |
学科分类:数学(综合) | |
来源: Cambridge University Press | |
【 摘 要 】
In the category W of archimedean l–groups with distinguished weak order unit, with unitpreserving l–homorphism, let B be the class of W-objects of the form D(X), with X basically disconnected, or, what is the same thing (we show), the W-objects of the M/N, where M is a vector lattice of measurable functions and N is an abstract ideal of null functions. In earlier work, we have characterized the epimorphisms in W, and shown that an object G is epicomplete (that is, has no proper epic extension) if and only if G ∈ B. This describes the epicompletetions of a give G (that is, epicomplete objects epically containing G). First, we note that an epicompletion of G is just a “B-completionâ€, that is, a minimal extension of G by a B–object, that is, by a vector lattice of measurable functions modulo null functions. (C[0, 1] has 2c non-eqivalent such extensions.) Then (we show) the B–completions, or epicompletions, of G are exactly the quotients of the l–group B(Y(G)) of real-valued Baire functions on the Yosida space Y(G) of G, by σ-ideals I for which G embeds naturally in B(Y(G))/I. There is a smallest I, called N(G), and over the embedding G ≦ B(Y(G))/N(G) lifts any homorphism from G to a B–object. (The existence, though not the nature, of such a “reflective†epicompletion was first shown by Madden and Vermeer, using locales, then verified by us using properties of the class B.) There is a unique maximal (not maximum) such I, called M(Y(G)), and B(Y(G))/M(Y(G)) is the unique essentialBcompletion. There is an intermediate σ -ideal, called Z(Y(G)), and the embedding G ≦ B(y(G))/Z(Y(G)) is a σ-embedding, and functorial for σ -homomorphisms. The sistuation stands in strong analogy to the theory in Boolean algebras of free σ -algebras and σ -extensions, though there are crucial differences.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040544157ZK.pdf | 1572KB | download |