期刊论文详细信息
Journal of the Australian Mathematical Society | |
The standard summation operator, the Euler-Maclaurin sum formula, and the Laplace transformation | |
John Boris Miller1  | |
关键词: primary 65 B 15; 44 A 10; 47 B 38; secondary 47 B 38; 39 B 70; | |
DOI : 10.1017/S1446788700026148 | |
学科分类:数学(综合) | |
来源: Cambridge University Press | |
【 摘 要 】
A proof is given of the Euler-Maclaurin sum formula, on a Banach space of differentiable vector-valued functions of bounded exponential growth, using the Laplace transformation. Some related summation formulae are proved by the same methods. Properties of the standard summation operator are proved, namely spectral properties and boundedness, continuity and differentiability results.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040543714ZK.pdf | 867KB | download |