期刊论文详细信息
Journal of the Australian Mathematical Society
Room n-cubes of lowe order
Jeffrey H. Dinitz1 
关键词: 05 B 15;   
DOI  :  10.1017/S1446788700024678
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

A Room n-cube of side t is an n dimensional array of side t which satisfies the property that each two dimensional projection is a Room square. The existence of a Room n-cube of side t is equivalent to the existence of n pairwise orthgonal symmetric Latin squares (POSLS) of side t. The existence of n pairwise orthogonal starters of order t implies the existence of n POSLS of side t. Denote by v(n) the maximum number of POSLS of side t. In this paper, we use Galois fields and computer constructions to construct sets of pairwise orthogonal starters of order t ≤ 101. The existence of these sets of starters gives improved lower bounds for v(n). In particular, we show v(17) ≥ 5, v(21) ≥ 5, v(29) ≥ 13, v(37) ≥ 15 and v(41) ≥ 9, among others.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040543575ZK.pdf 636KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次