期刊论文详细信息
Proceedings of the Edinburgh Mathematical Society | |
NEAR-ISOMETRIES BETWEEN $C(K)$-SPACES | |
N. J. Cutland1  | |
[1] G. B. Zimmer | |
关键词: Primary 47B38; Secondary 46S20; Banach–Stone; non-standard analysis; representation theorem; | |
DOI : 10.1017/S001309150300049X | |
学科分类:数学(综合) | |
来源: Cambridge University Press | |
【 摘 要 】
Let $X$, $Y$ be compact Hausdorff spaces and let $T:C(X,mathbb{R})o C(Y,mathbb{R})$ be an invertible linear operator. Non-standard analysis is used to give a new intuitive proof of the Amir–Cambern result that if $|T|hskip1pt|T^{-1}|lt2$, then there is a homeomorphism $psi:Yo X$. The approach provides a proof of the following representation theorem for such near-isometries:$$ Tf=(T1_X)(fcircpsi)+Sf, $$with $|S|leq2(|T|-(1/|T^{-1}|))$, so $|S|lt|T|$. If $|T|hskip1pt|T^{-1}|=1$, then $S=0$, giving the well-known representation for isometries.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040531356ZK.pdf | 201KB | download |