期刊论文详细信息
Proceedings of the Edinburgh Mathematical Society
NEAR-ISOMETRIES BETWEEN $C(K)$-SPACES
N. J. Cutland1 
[1] G. B. Zimmer
关键词: Primary 47B38;    Secondary 46S20;    Banach–Stone;    non-standard analysis;    representation theorem;   
DOI  :  10.1017/S001309150300049X
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

Let $X$, $Y$ be compact Hausdorff spaces and let $T:C(X,mathbb{R})o C(Y,mathbb{R})$ be an invertible linear operator. Non-standard analysis is used to give a new intuitive proof of the Amir–Cambern result that if $|T|hskip1pt|T^{-1}|lt2$, then there is a homeomorphism $psi:Yo X$. The approach provides a proof of the following representation theorem for such near-isometries:$$ Tf=(T1_X)(fcircpsi)+Sf, $$with $|S|leq2(|T|-(1/|T^{-1}|))$, so $|S|lt|T|$. If $|T|hskip1pt|T^{-1}|=1$, then $S=0$, giving the well-known representation for isometries.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040531356ZK.pdf 201KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:10次