Proceedings of the Edinburgh Mathematical Society | |
MULTIPLE POSITIVE SOLUTIONS AND BIFURCATION FOR AN EQUATION RELATED TO CHOQUARD’S EQUATION | |
Tassilo Küpper1  | |
[1] Zhengjie Zhang | |
关键词: multiple solutions; Choquard’s equation; bifurcation; | |
DOI : 10.1017/S0013091502000779 | |
学科分类:数学(综合) | |
来源: Cambridge University Press | |
【 摘 要 】
In this paper we study the existence of multiple positive solutions and the bifurcation problem for the following equation:$$ -Delta u+u=iggl(int_{mathbb{R}^3}frac{|u(y)|^2}{|x-y|},mathrm{d}yiggr)u+mu f(x),quad xinmathbb{R}^3, $$where $f(x)in H^{-1}(mathbb{R}^3)$, $f(x)geq0$, $f(x)otequiv0$. We show that there are positive constants $mu^{*}$ and $mu^{**}$ such that the above equation possesses at least two positive solutions for $muin(0,mu^{*})$, and no positive solution for $mu>mu^{**}$. Furthermore, we prove that $mu=mu^{*}$ is a bifurcation point for the equation under study.AMS 2000 Mathematics subject classification: Primary 35J60; 35J70
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040531316ZK.pdf | 207KB | download |