期刊论文详细信息
Proceedings of the Estonian Academy of Sciences
Determination of residual stresses and material properties by an energy-based method using artificial neural networks
Lin Yan1  Hongping Jin1  Wenyu Yang1 
[1] $$
关键词: spherical indentation;    residual stress;    material properties;    finite element analysis;   
DOI  :  10.3176/proc.2012.4.04
学科分类:化学(综合)
来源: Teaduste Akadeemia Kirjastus
PDF
【 摘 要 】

With the help of an energy-based method and dimensional analysis, an artificial neural network model is constructed to extract the residual stress and material properties using spherical indentation. The relationships between the work of residual stress, the residual stress, and material properties are numerically calibrated through training and validation of the artificial neural network (ANN) model. They enable the direct mapping of the characteristics of the indentation parameters to the equi-biaxial uniform residual stress and the elastic–plastic material properties. The proposed ANN can quickly and effectively predict the residual stress and material properties based on the load–depth curve of spherical indentation.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040510805ZK.pdf 1210KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:8次