Proceedings Mathematical Sciences | |
Isometric multipliers of a vector valued Beurling algebra on a discrete semigroup | |
关键词: Weighted semigroup; multipliers of a semigroup; Beurling algebra; isometric multipliers.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let $(S, omega)$ be a weighted abelian semigroup, let $M_omega(S)$ be the semigroup of $omega$-bounded multipliers of $S$, and let $mathcal{A}$ be a strictly convex commutative Banach algebra with identity. It is shown that $T$ is an onto isometric multiplier of $mathcal{l}^1(S, omega, mathcal{A})$ if and only if there exists an invertible $sigmain M_omega(S)$, a unitary point $ainmathcal{A}$, and a $k > 0$ such that $T(f) = kasum_{xin S}f(x)delta_{sigma (x)}$ for each $f = sum_{xin S}f(x)delta_xinmathcal{l}^1(S, omega, mathcal{A})$. It is also shown that an isomorphism from $mathcal{l}^1(S_1, omega_1, mathcal{A})$ onto $mathcal{l}^1(S_2, omega_2, mathcal{B})$ induces an isomorphism from $M(mathcal{l}^1(S_1, omega_1, mathcal{A}))$, the set of all multipliers of $mathcal{l}^1(S_1, omega_1, mathcal{A})$, onto $M(mathcal{l}^1(S_2, omega_2, mathcal{B}))$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040507232ZK.pdf | 3045KB | download |