| Proceedings Mathematical Sciences | |
| (2ð‘›-1)-Ideal amenability of triangular banach algebras | |
| M Ettefagh1  S Etemad2  | |
| [1] Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran$$;Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran$$ | |
| 关键词: Amenability; ideal amenability; triangular Banach algebras.; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Indian Academy of Sciences | |
PDF
|
|
【 摘 要 】
Let $mathcal{A}$ and $mathcal{B}$ be two unital Banach algebras and let $mathcal{M}$ be an unital Banach $mathcal{A}$, $mathcal{B}$-module. Also, let $mathcal{T}=left[egin{smallmatrix} mathcal{A} & mathcal{M} & mathcal{B}end{smallmatrix}ight]$ be the corresponding triangular Banach algebra. Forrest and Marcoux (Trans. Amer. Math. Soc. 354 (2002) 1435–1452) have studied the ð‘›-weak amenability of triangular Banach algebras. In this paper, we investigate (2ð‘›-1)-ideal amenability of $mathcal{T}$ for all 𑛠≥ 1. We introduce the structure of ideals of these Banach algebras and then, we show that (2ð‘›-1)-ideal amenability of $mathcal{T}$ depends on (2ð‘›-1)-ideal amenability of Banach algebras $mathcal{A}$ and $mathcal{B}$.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912040507144ZK.pdf | 89KB |
PDF