期刊论文详细信息
| Proceedings Mathematical Sciences | |
| Positive Integer Solutions of the Diophantine Equation $x^2 - L_n xy + (-1)^n y^2 = ± 5^r$ | |
| Zafer Åžiar1  Refik Keskin2  | |
| [1] Bingöl University, Rektörlüğü, 000 Bingöl, Turkey$$;Sakarya University, Merkezi, 0 Sakarya, Turkey$$ | |
| 关键词: Fibonacci numbers; Lucas numbers; diophantine equations; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Indian Academy of Sciences | |
PDF
|
|
【 摘 要 】
In this paper, we consider the equation $x^2-L_n xy+(-1)^n y^2=± 5^r$ and determine the values of ð‘› for which the equation has positive integer solutions ð‘¥ and ð‘¦. Moreover, we give all positive integer solutions of the equation $x^2-L_n xy+(-1)^n y^2=± 5^r$ when the equation has positive integer solutions.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912040507096ZK.pdf | 231KB |
PDF