| Proceedings Mathematical Sciences | |
| Hyperbolicity in Median Graphs | |
| José M Sigarreta1  | |
| [1] Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No. Col. Garita, 0 Acalpulco Gro., Mexico$$ | |
| 关键词: Median graph; Gromov hyperbolicity; Gromov hyperbolic graph; infinite graphs; geodesics.; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Indian Academy of Sciences | |
PDF
|
|
【 摘 要 】
If ð‘‹ is a geodesic metric space and $x_1,x_2,x_3in X$, a geodesic triangle $T={x_1,x_2,x_3}$ is the union of the three geodesics $[x_1 x_2],[x_2 x_3]$ and $[x_3 x_1]$ in ð‘‹. The space ð‘‹ is ð›¿-hyperbolic (in the Gromov sense) if any side of 𑇠is contained in a ð›¿-neighborhood of the union of the two other sides, for every geodesic triangle 𑇠in ð‘‹. If ð‘‹ is hyperbolic, we denote by ð›¿(ð‘‹) the sharp hyperbolicity constant of ð‘‹, i.e.,$ð›¿(X)=inf{ð›¿â‰¥ 0: X quadext{is}quad ð›¿-ext{hyperbolic}}$. In this paper we study the hyperbolicity of median graphs and we also obtain some results about general hyperbolic graphs. In particular, we prove that a median graph is hyperbolic if and only if its bigons are thin.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912040507059ZK.pdf | 223KB |
PDF