期刊论文详细信息
Proceedings Mathematical Sciences
Hyperbolicity in Median Graphs
José M Sigarreta1 
[1] Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No. Col. Garita, 0 Acalpulco Gro., Mexico$$
关键词: Median graph;    Gromov hyperbolicity;    Gromov hyperbolic graph;    infinite graphs;    geodesics.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

If 𝑋 is a geodesic metric space and $x_1,x_2,x_3in X$, a geodesic triangle $T={x_1,x_2,x_3}$ is the union of the three geodesics $[x_1 x_2],[x_2 x_3]$ and $[x_3 x_1]$ in 𝑋. The space 𝑋 is 𝛿-hyperbolic (in the Gromov sense) if any side of 𝑇 is contained in a 𝛿-neighborhood of the union of the two other sides, for every geodesic triangle 𝑇 in 𝑋. If 𝑋 is hyperbolic, we denote by 𝛿(𝑋) the sharp hyperbolicity constant of 𝑋, i.e.,$𝛿(X)=inf{𝛿≥ 0: X quadext{is}quad 𝛿-ext{hyperbolic}}$. In this paper we study the hyperbolicity of median graphs and we also obtain some results about general hyperbolic graphs. In particular, we prove that a median graph is hyperbolic if and only if its bigons are thin.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040507059ZK.pdf 223KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:18次