期刊论文详细信息
| Proceedings Mathematical Sciences | |
| Distribution of Residues and Primitive Roots | |
| Jagmohan Tanti1  R Thangadurai2  | |
| [1] Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Brambe, Ranchi 0, India$$;Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 0, India$$ | |
| 关键词: Quadratic residues; primitive roots; finite fields.; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Indian Academy of Sciences | |
PDF
|
|
【 摘 要 】
Given an integer ð‘ ≥ 3, we shall prove that for all primes $p≥(N-2)^2 4^N$, there exists ð‘¥ in $(mathbb{Z}/pmathbb{Z})^∗$ such that $x,x+1,ldots,x+N-1$ are all squares (respectively, non-squares) modulo ð‘. Similarly, for an integer $N≥ 2$, we prove that for all primes $p≥ exp(2^{5.54N})$, there exists an element $xin(mathbb{Z}/pmathbb{Z})^∗$ such that $x,x+1,ldots,x+N-1$ are all generators of $(mathbb{Z}/pmathbb{Z})^∗$.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912040507036ZK.pdf | 197KB |
PDF