期刊论文详细信息
Proceedings Mathematical Sciences | |
On Diophantine Equations of the Form $(x-a_1)(x-a_2)ldots(x-a_k)+r=y^n$ | |
Manisha Kulkarni1  B Sury2  | |
[1] Poornaprajna Institute of Scientific Research, Devanahalli, Bangalore 0, India$$;Statistics & Mathematics Unit, Indian Statistical Institute, th Mile, Mysore Road, Bangalore 0 0, India$$ | |
关键词: Diophantine equations; ErdÅ‘s–Selfridge.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Erdős and Selfridge [3] proved that a product of consecutive integers can never be a perfect power. That is, the equation $x(x+1)(x+2)ldots(x+(m-1))=y^n$ has no solutions in positive integers $x,m,n$ where $m,n>1$ and $yin Q$. We consider the equation$$(x-a_1)(x-a_2)ldots(x-a_k)+r=y^n$$where $0≤ a_1 < a_2
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506944ZK.pdf | 148KB | download |