期刊论文详细信息
Proceedings Mathematical Sciences
On Diophantine Equations of the Form $(x-a_1)(x-a_2)ldots(x-a_k)+r=y^n$
Manisha Kulkarni1  B Sury2 
[1] Poornaprajna Institute of Scientific Research, Devanahalli, Bangalore 0, India$$;Statistics & Mathematics Unit, Indian Statistical Institute, th Mile, Mysore Road, Bangalore 0 0, India$$
关键词: Diophantine equations;    ErdÅ‘s–Selfridge.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

Erdős and Selfridge [3] proved that a product of consecutive integers can never be a perfect power. That is, the equation $x(x+1)(x+2)ldots(x+(m-1))=y^n$ has no solutions in positive integers $x,m,n$ where $m,n>1$ and $yin Q$. We consider the equation$$(x-a_1)(x-a_2)ldots(x-a_k)+r=y^n$$where $0≤ a_1 < a_2 2 and for any nonzero integer 𝑟 which is not a perfect 𝑛-th power for which the equation admits solutions, 𝑘 is bounded by an effective bound.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506944ZK.pdf 148KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次