期刊论文详细信息
Proceedings Mathematical Sciences
Positive Solutions and Eigenvalue Intervals for Nonlinear Systems
Meirong Zhang2  Donal O'Regan1  Jifeng Chu3 
[1] Department of Applied Mathematics, Hohai University, Nanjing 0 0, China$$;Department of Mathematics, National University of Ireland, Galway, Ireland$$;Department of Mathematical Sciences, Tsinghua University, Beijing 00 0, China$$
关键词: Nonlinear system;    ð?‘?-Laplacian;    positive solutions;    eigenvalue intervals;    fixed point theorem in cones.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

This paper deals with the existence of positive solutions for the nonlinear system$$(q(t)𝜙(p(t){u'}_i(t)))'+f^i(t,u)=0, quad 0 < t < 1, quad i=1,2,ldots,n.$$This system often arises in the study of positive radial solutions of nonlinear elliptic system. Here $u=(u_1,...,u_n)$ and $f^i,i=1,2,ldots,n$ are continuous and nonnegative functions, $p(t), q(t):[0, 1]→(0,∞)$ are continuous functions. Moreover, we characterize the eigenvalue intervals for$$(q(t)𝜙(p(t){u'}_i(t)))'+𝜆 h_i(t)g^i(u)=0,quad 0 < t < 1, quad i=1,2,ldots,n.$$The proof is based on a well-known fixed point theorem in cones.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506764ZK.pdf 177KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:13次