Proceedings Mathematical Sciences | |
Positive Solutions and Eigenvalue Intervals for Nonlinear Systems | |
Meirong Zhang2  Donal O'Regan1  Jifeng Chu3  | |
[1] Department of Applied Mathematics, Hohai University, Nanjing 0 0, China$$;Department of Mathematics, National University of Ireland, Galway, Ireland$$;Department of Mathematical Sciences, Tsinghua University, Beijing 00 0, China$$ | |
关键词: Nonlinear system; ð?‘?-Laplacian; positive solutions; eigenvalue intervals; fixed point theorem in cones.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
This paper deals with the existence of positive solutions for the nonlinear system$$(q(t)ðœ™(p(t){u'}_i(t)))'+f^i(t,u)=0, quad 0 < t < 1, quad i=1,2,ldots,n.$$This system often arises in the study of positive radial solutions of nonlinear elliptic system. Here $u=(u_1,...,u_n)$ and $f^i,i=1,2,ldots,n$ are continuous and nonnegative functions, $p(t), q(t):[0, 1]→(0,∞)$ are continuous functions. Moreover, we characterize the eigenvalue intervals for$$(q(t)ðœ™(p(t){u'}_i(t)))'+𜆠h_i(t)g^i(u)=0,quad 0 < t < 1, quad i=1,2,ldots,n.$$The proof is based on a well-known fixed point theorem in cones.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506764ZK.pdf | 177KB | download |