Proceedings Mathematical Sciences | |
Minimal Cuntz–Krieger Dilations and Representations of Cuntz–Krieger Algebras | |
B V Rajarama Bhat1  Joachim Zacharias3  Santanu Dey2  | |
[1] Indian Statistical Institute, R.V. College Post, Bangalore 0 0, India$$;Institut für Mathematik und Informatik, Ernst-Moritz-Arndt-Universität, Friedrich-Ludwig-Jahn-Str. a, Greifswald, Germany$$;School of Mathematical Sciences, University of Nottingham, Nottingham, NG RD UK$$ | |
关键词: Dilation; commuting tuples; complete positivity; Cuntz algebras; Cuntz–Krieger algebras.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Given a contractive tuple of Hilbert space operators satisfying certain ð´-relations we show that there exists a unique minimal dilation to generators of Cuntz–Krieger algebras or its extension by compact operators. This Cuntz–Krieger dilation can be obtained from the classical minimal isometric dilation as a certain maximal ð´-relation piece. We define a maximal piece more generally for a finite set of polynomials in ð‘› noncommuting variables. We classify all representations of Cuntz–Krieger algebras $mathcal{O}_A$ obtained from dilations of commuting tuples satisfying ð´-relations. The universal properties of the minimal Cuntz–Krieger dilation and the WOT-closed algebra generated by it is studied in terms of invariant subspaces.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506730ZK.pdf | 336KB | download |