期刊论文详细信息
Proceedings Mathematical Sciences
On the Structure of 𝑝-Zero-Sum Free Sequences and its Application to a Variant of Erdös–Ginzburg–Ziv Theorem
A Panigrahi3  W D Gao2  R Thangadurai1 
[1] $$;Department of Computer Science and Technology, University of Petroleum, Changping Shuiku Road, Beijing 000, China$$;School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 0, India$$
关键词: Sequences;    zero-sum problems;    zero-free;    Erdös–Ginzburg–Ziv theorem.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

Let 𝑝 be any odd prime number. Let 𝑘 be any positive integer such that $2 ≤ k ≤ left[frac{p+1}{3}ight]+1$. Let $S =(a_1,a_2,ldots,a_{2p−k})$ be any sequence in $mathbb{Z}_p$ such that there is no subsequence of length 𝑝 of 𝑆 whose sum is zero in $mathbb{Z}_p$. Then we prove that we can arrange the sequence 𝑆 as follows:$$S=(underset{uext{times}}{underbrace{a,a,ldots,a}},underset{vext{times}}{underbrace{b,b,ldots,b}},{a'}_1,{a'}_2,ldots,{a'}_{2p-k-u-v})$$where $u≥ v, u + v ≥ 2p − 2k + 2$ and 𝑎 − 𝑏 generates $mathbb{Z}_p$. This extends a result in [13] to all primes 𝑝 and 𝑘 satisfying $(p + 1)/4 + 3≤ k≤ (p + 1)/3 + 1$. Also, we prove that if 𝑔 denotes the number of distinct residue classes modulo 𝑝 appearing in the sequence 𝑆 in $mathbb{Z}_p$ of length $2p − k(2≤ k≤ [(p + 1)/4]+1)$, and $g≥ 2sqrt{2}sqrt{k - 2}$, then there exists a subsequence of 𝑆 of length 𝑝 whose sum is zero in $mathbb{Z}_p$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506675ZK.pdf 193KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:10次