Proceedings Mathematical Sciences | |
On the Structure of ð‘-Zero-Sum Free Sequences and its Application to a Variant of Erdös–Ginzburg–Ziv Theorem | |
A Panigrahi3  W D Gao2  R Thangadurai1  | |
[1] $$;Department of Computer Science and Technology, University of Petroleum, Changping Shuiku Road, Beijing 000, China$$;School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 0, India$$ | |
关键词: Sequences; zero-sum problems; zero-free; Erdös–Ginzburg–Ziv theorem.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let ð‘ be any odd prime number. Let 𑘠be any positive integer such that $2 ≤ k ≤ left[frac{p+1}{3}ight]+1$. Let $S =(a_1,a_2,ldots,a_{2p−k})$ be any sequence in $mathbb{Z}_p$ such that there is no subsequence of length ð‘ of 𑆠whose sum is zero in $mathbb{Z}_p$. Then we prove that we can arrange the sequence 𑆠as follows:$$S=(underset{uext{times}}{underbrace{a,a,ldots,a}},underset{vext{times}}{underbrace{b,b,ldots,b}},{a'}_1,{a'}_2,ldots,{a'}_{2p-k-u-v})$$where $u≥ v, u + v ≥ 2p − 2k + 2$ and 𑎠− ð‘ generates $mathbb{Z}_p$. This extends a result in [13] to all primes ð‘ and 𑘠satisfying $(p + 1)/4 + 3≤ k≤ (p + 1)/3 + 1$. Also, we prove that if ð‘” denotes the number of distinct residue classes modulo ð‘ appearing in the sequence 𑆠in $mathbb{Z}_p$ of length $2p − k(2≤ k≤ [(p + 1)/4]+1)$, and $g≥ 2sqrt{2}sqrt{k - 2}$, then there exists a subsequence of 𑆠of length ð‘ whose sum is zero in $mathbb{Z}_p$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506675ZK.pdf | 193KB | download |