期刊论文详细信息
Proceedings Mathematical Sciences
On the Limit-Classifications of Even and Odd-Order Formally Symmetric Differential Expressions
V Krishna Kumar3  A Padmanabhan1  K V Alice2 
[1] Department of Mathematics, Govt. College, Mokeri , India$$;Department of Mathematics, Newman College, Thodupuzha , India$$;Department of Mathematics, University of Calicut , India$$
关键词: Limit classification;    minimal and maximal closed operators;    symmetric operators;    self-adjoint operators;    quotient space $D(T_{max})/D(T_{min})$.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

In this paper we consider the formally symmetric differential expression $M[cdot p]$ of any order (odd or even) ≥ 2. We characterise the dimension of the quotient space $D(T_{max})/D(T_{min})$ associated with $M[cdot p]$ in terms of the behaviour of the determinants$$detlimits_{r,sin N_n}[[f_r g_s](∞)]$$where 1 ≤ 𝑛 ≤ (order of the expression +1); here $[fg](∞) = limlimits_{x→∞}[fg](x)$, where $[fg](x)$ is the sesquilinear form in 𝑓 and 𝑔 associated with 𝑀. These results generalise the well-known theorem that 𝑀 is in the limit-point case at ∞ if and only if $[fg](∞)=0$ for every $f, g in$ the maximal domain 𝛥 associated with 𝑀.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506641ZK.pdf 128KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:16次