Earth Sciences Research Journal | |
Water temperature prediction in a subtropical subalpine lake using soft computing techniques | |
Honeyeh, Kazemi3  Ozgur, Kisi2  Wen-Cheng, Liu1  Saeed, Samadianfard3  | |
[1] National United University, Miao, Taiwan$$;Canik Basari University, Samsun, Turkey$$;University of Tabriz, Tabriz, Iran$$ | |
关键词: Soft computing techniques; statistical indicators; subalpine lake; water temperature.; | |
DOI : 10.15446/esrj.v20n2.43199 | |
学科分类:天文学(综合) | |
来源: Universidad Nacional de Colombia * Departamento de Geociencias | |
【 摘 要 】
Lake water temperature is one of the key parameters in determining the ecological conditions within a lake, as it influences both chemical and biological processes. Therefore, accurate prediction of water temperature is crucially important for lake management. In this paper, the performance of soft computing techniques including gene expression programming (GEP), which is a variant of genetic programming (GP), adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) to predict hourly water temperature at a buoy station in the Yuan-Yang Lake (YYL) in north-central Taiwan at various measured depths was evaluated. To evaluate the performance of the soft computing techniques, three different statistical indicators were used, including the root mean squared error (RMSE), the mean absolute error (MAE), and the coefficient of correlation (R). Results showed that the GEP had the best performances among other studied methods in the prediction of hourly water temperature at 0, 2 and 3 meter depths below water surface, but there was a different trend in the 1 meter depth below water surface. In this depth, the ANN had better accuracy than the GEP and ANFIS. Despite the error (RMSE value) is smaller in ANN than GEP, there is an upper bound in scatter plot of ANN that imposes a constant value, which is not suitable for predictive purposes. As a conclusion, results from the current study demonstrated that GEP provided moderately reasonable trends for the prediction of hourly water temperature in different depths.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506123ZK.pdf | 1465KB | download |