期刊论文详细信息
Journal of Earth system science
Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM
Muhammad Mubashar Dogar1 21  Fred Kucharski32  Syed Azharuddin43 
[1] Earth Science and Engineering Department, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.$$;Abdus Salam International Centre for Theoretical Physics, Earth System Physics Section, Strada Costiera 11, 34151 Trieste, Italy.$$;Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226 007, India.$$
关键词: ENSO;    NAO;    MENA;    Hadley circulation;    ITCZ;    monsoon system.;   
DOI  :  
学科分类:天文学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

ENSO is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of ENSO events have increased over the last fewdecades resulting in a need to study climatic impacts of ENSO magnitude both at global and regional scales. Hence, to better understand the impact of ENSO amplitude over the tropical and extratropical regions focussing on the Asian and African domains, ENSO sensitivity experiments are conducted using ICTPAGCM (‘SPEEDY’). It is anticipated that the tropical Pacific SST forcing will be enough to produce ENSO-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of ENSO over the Pacific, North and South America and African regions very well. However, it underestimates ENSO teleconnectionpatterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air–sea coupling is alsorequired for better representation of ENSO-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that ENSO impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase ofENSO causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Ni˜na phase produces more rain over these regions during the summer season. Model results further reveal that ENSO magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant impact over the tropical Atlantic and the Indian Ocean through Walker circulation. ENSO-induced negative (positive) NAO-like response and associated changes over Southern Europe and North Africa get significantly strong following increased intensity of El Ni˜no (La Ni˜na) in the northern (southern) hemisphere in the boreal winter (summer)season. We further find that ENSO magnitude significantly impacts Hadley and Walker circulations. The positive phase of ENSO (El Ni˜no) overall strengthens Hadley cell and a reverse is true for the La Ni˜na phase. ENSO-induced strengthening and weakening of Hadley cell induces significant impact over SouthAsian and African ITCZ convective regions through modification of ITCZ/ monsoon circulation system.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040492942ZK.pdf 6338KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:7次