期刊论文详细信息
APSIPA Transactions on Signal and Information Processing
A sampling-based speaker clustering using utterance-oriented Dirichlet process mixture model and its evaluation on large-scale data
Atsushi Nakamura3  Tetsunori Kobayashi1  Shinji Watanabe2  Naohiro Tawara1  Tetsuji Ogawa1 
[1] Waseda University;Naohiro Tawara;Nagoya City University
关键词: Sampling approach;    Non-parametric Bayesian model;    Gibbs sampling;    Utterance-oriented Dirichlet process mixture model;    Speaker clustering;   
DOI  :  10.1017/ATSIP.2015.19
学科分类:计算机科学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

An infinite mixture model is applied to model-based speaker clustering with sampling-based optimization to make it possible to estimate the number of speakers. For this purpose, a framework of non-parametric Bayesian modeling is implemented with the Markov chain Monte Carlo and incorporated in the utterance-oriented speaker model. The proposed model is called the utterance-oriented Dirichlet process mixture model (UO-DPMM). The present paper demonstrates that UO-DPMM is successfully applied on large-scale data and outperforms the conventional hierarchical agglomerative clustering, especially for large amounts of utterances.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912020426437ZK.pdf 446KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次