期刊论文详细信息
Journal of Nuclear Medicine
Regulation of 18F-FDG Accumulation in Colorectal Cancer Cells with Mutated KRAS
Kosuke Toda1  Yoshiro Itatani1  Suguru Hasegawa1  Susumu Inamoto1  Hiroyuki Kimura1  Kaori Togashi1  Masayoshi Iwamoto1  Yoshiharu Sakai1  Hiroaki Okuyama1  Kenji Kawada1  Masahiro Inoue1  Senji Shirasawa1  Takehiko Sasazuki1  Yuji Nakamoto1 
关键词: colon cancer;    KRAS;    18F-FDG PET scans;    imagingglucose metabolism;   
DOI  :  10.2967/jnumed.114.142927
学科分类:医学(综合)
来源: Society of Nuclear Medicine
PDF
【 摘 要 】

KRAS gene mutations occur in approximately 40% of colorectal cancers (CRCs) and are associated with resistance to anti–epidermal growth factor receptor antibody therapy. We previously demonstrated that 18F-FDG accumulation in PET was significantly higher in CRCs with mutated KRAS than in those with wild-type KRAS in a clinical setting. Here, we investigated the mechanisms by which mutated KRAS increased 18F-FDG accumulation. Methods: Using paired isogenic human CRC cell lines that differ only in the mutational status of the KRAS gene, we measured 18F-FDG accumulation in these cells in vitro and in vivo. We also investigated the roles of proteins that have a function in 18F-FDG accumulation. Finally, we examined the relationship among mutated KRAS, hypoxia-inducible factor 1α (HIF-1α), and maximum standardized uptake value with 51 clinical CRC samples. Results: In the in vitro experiments, 18F-FDG accumulation was significantly higher in KRAS-mutant cells than in wild-type controls under normoxic conditions. The expression levels of glucose transporter 1 (GLUT1) and hexokinase type 2 (HK2) were higher in KRAS-mutant cells, and 18F-FDG accumulation was decreased by knockdown of GLUT1. Hypoxic induction of HIF-1α was higher in KRAS-mutant cells than in wild-type controls; in turn, elevated HIF-1α resulted in higher GLUT1 expression and 18F-FDG accumulation. In addition, HIF-1α knockdown decreased 18F-FDG accumulation under hypoxic conditions only in the KRAS-mutant cells. Small-animal PET scans showed in vivo 18F-FDG accumulation to be significantly higher in xenografts with mutated KRAS than in those with wild-type KRAS. The immunohistochemistry of these xenograft tumors showed that staining of GLUT1 was consistent with that of HIF-1α and pimonidazole. In a retrospective analysis of clinical samples, KRAS mutation exhibited a significantly positive correlation with expressions of GLUT1 and HIF-1α and with maximum standardized uptake value. Conclusion: Mutated KRAS caused higher 18F-FDG accumulation possibly by upregulation of GLUT1; moreover, HIF-1α additively increased 18F-FDG accumulation in hypoxic lesions. 18F-FDG PET might be useful for predicting the KRAS status noninvasively.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010199036ZK.pdf 1556KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:6次