Journal of Nuclear Medicine | |
Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species–Mediated Hypoxia-Inducible Factor-1α Activation | |
Eun Jeong Lee1  Jin-Young Paik1  Cung Hoa Thien Quach1  Jin Hee Lee1  Kyung-Han Lee1  Hyunhee Oh1  Seung-Hwan Moon1  Kyung-Ho Jung1  Jin Won Park1  | |
关键词: resveratrol; 18F-FDG; cancer; reactive oxygen species; HIF-1α; | |
DOI : 10.2967/jnumed.112.115436 | |
学科分类:医学(综合) | |
来源: Society of Nuclear Medicine | |
【 摘 要 】
Resveratrol is gaining attention for its anticancer effects and is also recognized for its antioxidant properties and influence on glucose metabolism. Augmented reactive oxygen species (ROS) and high glycolytic flux are common characteristics of malignant cells. We thus evaluated the effect of resveratrol on cancer cell glucose metabolism and investigated the role of ROS in the response. Methods: Cancer cells were measured for cell content and 18F-FDG uptake. Assays were performed for lactate production; hexokinase activity and intracellular ROS; and immunoblotting for hypoxia-inducible factor-1α (HIF-1α), Akt, mammalian target of rapamycin, and glucose transporter type 1 (Glut-1). Animal studies were performed with small-animal PET imaging of Lewis lung carcinoma tumor–bearing mice. Results: Resveratrol mildly decreased cell content and more pronouncedly suppressed 18F-FDG uptake in Lewis lung carcinoma, HT-29 colon, and T47D breast cancer cells. Hence, 18F-FDG uptake normalized to cell content was reduced to less than half of controls by 24-h exposure to resveratrol. This reduction was attributed to reduced glycolytic flux and Glut-1 expression. Resveratrol also decreased intracellular ROS in patterns that closely paralleled 18F-FDG uptake. Scavenging of ROS with N-acetyl cysteine, but not inhibition of nicotinamide adenine dinucleotide phosphate oxidase, was sufficient to suppress 18F-FDG uptake. Conversely, ROS inducers effectively reversed the metabolic response of resveratrol. HIF-1α protein was markedly reduced by resveratrol, and inhibiting HIF-1α expression with cycloheximide or specific small interfering RNAs suppressed 18F-FDG uptake. The proteosomal inhibitor MG132 partly restored HIF-1α level and 18F-FDG uptake in resveratrol-treated cells. Resveratrol also inhibited Akt activation; in addition, inhibitors and small interfering RNAs against phosphoinositide 3-kinase decreased 18F-FDG uptake. Finally, small-animal PET results showed resveratrol treatment to suppress tumor 18F-FDG uptake in vivo. Conclusion: Resveratrol suppresses cancer cell 18F-FDG uptake and glycolytic metabolism in a manner that depends on the capacity of resveratrol to inhibit intracellular ROS, which downregulates HIF-1α accumulation.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912010198663ZK.pdf | 1027KB | download |