期刊论文详细信息
Journal of Nuclear Medicine
A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer
Dong Soo Lee1  In Chan Song1  Hae Young Ko1  Soonhag Kim1  Hyungu Kang1  Jung Hwan Lee1  Sung Ho Ryu1  Do Won Hwang1 
关键词: multimodal image;    cancer targeting;    nanoparticles;    aptamer;    optical and radionuclide image;   
DOI  :  10.2967/jnumed.109.069880
学科分类:医学(综合)
来源: Society of Nuclear Medicine
PDF
【 摘 要 】

The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo. Methods: A cobalt–ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with 67Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo 67Ga radionuclide imaging and MRI were performed using a γ-camera and a 1.5-T MR imager, respectively. Results: TEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)–treated C6 cells. The rhodamine fluorescence intensity and 67Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The 67Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles. Conclusion: We developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010197556ZK.pdf 1793KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:13次